

# HindPhotostat



### **Hind Photostat & Book Store**

# IES MASTER Civil Engineering Toppers Handwritten Notes DESIGN OF STEEL STRUCTURES

Theory

**BY-GHANSHYAM SIR** 

- Explanation
- Derivation
- Example
- Shortcuts
- Previous Years Question With Solution

Visit us:-www.hindphotostat.com

Courier Facility All Over India (DTDC & INDIA POST)
Mob-9311989030



## **HindPhotostat**



#### MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX

# ESE, GATE, PSU BEST QUALITY TOPPER HAND WRITTEN NOTES MINIMUM PRICE AVAILABLE @ OUR WEBSITE

- 1. ELECTRONICS ENGINEERING
- 3.MECHANICAL ENGINEERING
- **5.INSTRUMENTION ENGINEERING**
- 2. ELECTRICAL ENGINEERING
- 4. CIVIL ENGINEERING
- 6. COMPUTER SCIENCE

#### **IES, GATE, PSU TEST SERIES AVAILABLE @ OUR WEBSITE**

- **❖ IES PRELIMS & MAINS**
- **GATE**
- > NOTE;- ALL ENGINEERING BRANCHS
- > ALL PSUs PREVIOUS YEAR QUESTION PAPER @ OUR WEBSITE

#### **PUBLICATIONS BOOKS -**

MADE EASY, IES MASTER, ACE ACADEMY, KREATRYX, GATE ACADEMY, ARIHANT, GK
RAKESH YADAV, KD CAMPUS, FOUNDATION, MC-GRAW HILL (TMH), PEARSON...OTHERS

HEAVY DISCOUNTS BOOKS AVAILABLE @ OUR WEBSITE

F230, Lado Sarai New Delhi-110030 Phone: 9311 989 030 Shop No: 46 100 Futa M.G. Rd Near Made Easy Ghitorni, New Delhi-30 Phone:9711475393 F518 Near Kali Maa Mandir Lado Sarai New Delhi-110030 Phone: 9560 163 471 Shop No.7/8 Saidulajab Market Neb Sarai More, Saket, New Delhi-30

Website: <a href="www.hindPhotostat.com">www.hindPhotostat.com</a>
Contact Us: 9311 989 030
Courier Facility All Over India
(DTDC & INDIA POST)

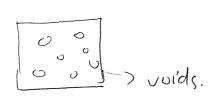
# Steel Structure

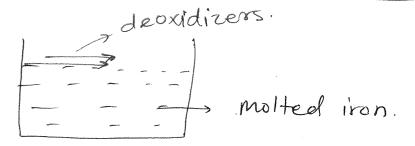
ESE 
$$\rightarrow$$
 5-6 Q. (12-13 Q in 2021).  
Mains  $\rightarrow$  60 Marks.  
GATE  $\rightarrow$  2-3 Q.

- 1 Introduction
- 2 General Design Consideration.
- 3) Bolted Connections.
- @ Welded Connections
- 5 Tension member
- 6 Compression member.
- 2 Beams
- 8 Plate Girder
- 9 Gantry girder
- 1 Industrial Building.
- 1 Plantic Analysis.

# 1. Introduction

# Purpose of Is codes.


- 1 To emure minimum safety.
- 1 Legal validity.
- 3 Consistency among designers.
- 4 Certain tables and graphs for easier calculation.
- # Important codes for design of steel str.:
  - 1 15: 800 2007 & Design of steel structure.
  - ② steel table. → 15:808
- # Difference between RCC & steel structure:


Reinforced cement concrete structures steel structure

- 1) RCC materials com not be reused.
- 2) RCC has less strength to ut ratio.
- 3 Less costly
- (y) section size required is more hence heavy wt structure.
- 1 Less ductile
- (a) Nom-homogeneous hence not easy to pridict the behavious
- 1 More fire resistant 10 Negliaible corrosion

- @ steel com be re-used
- 2) steel has more strength to wt ratio
- 1 More costly
- 9 section size required is less hence light wt structure
- (5) More ductile
- 6 Homogeneous hence early to predict the behaviour
- Dless fire resistant
- (8) Grossian is more

| Steel                                                                             |
|-----------------------------------------------------------------------------------|
| # It is an allow of iron having carbon content of to 1:1                          |
| - Bained on carbon content, there are three types of structural steel.            |
| To Low carbon steel (0.1 - 0.25% carbon) -> as structured steel.                  |
| 1 Medium carbon steel (0.2 - 0.6% carbon)                                         |
| (ii) High carbon steel (0.6-1.1%, carbon).                                        |
| # wrought Iron. (Purest)> C < 0.2%                                                |
| steel Cast Iron. $C \ge 2.5$ %                                                    |
| Cast Iron C > a.s.y.                                                              |
| - % carbon ↑ ⇒ ductility 1                                                        |
| - Also y carbon 1 will be bad effect in welding.                                  |
| to control dissolved oxygen during the manufacturing                              |
| - lower of oxygen content is good for durability                                  |
| $\rho$ , $\rho$                                                                   |
| of steel.  - On the basis of oxygen content, we classify steel                    |
| as -  (i) Killed Steel (onygen < 30 ppm) > Generally used for structural steel as |
| (1) Semi-Skilled steel (30 to 150 ppm) low 1. of onygen is there.                 |
| @ Rimmed steel (> 150 ppm).                                                       |



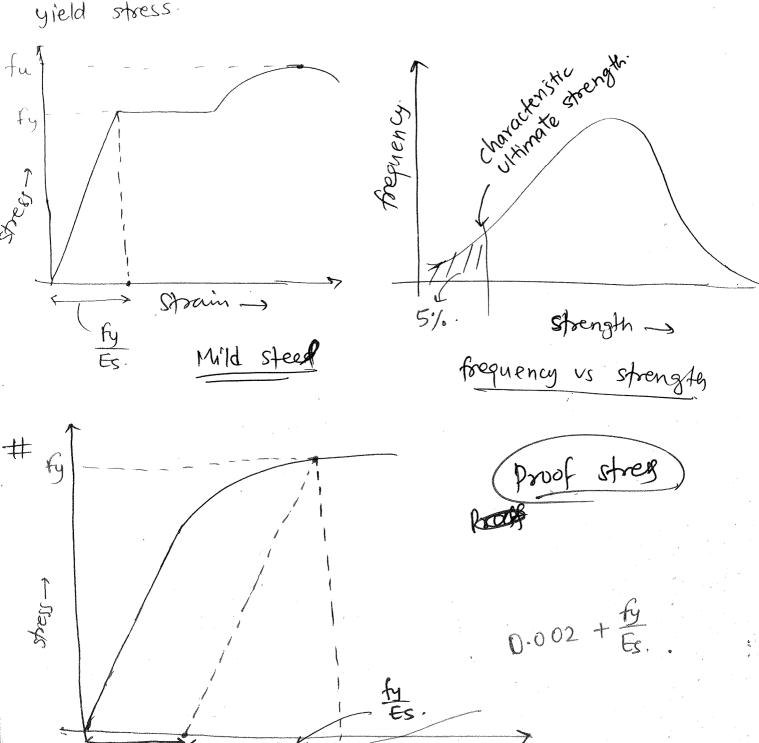


- Structural steel are generally killed or semie killed. (due to less onygen content).
- Carbon percentage in percentage in structural steel is generally less than 0.25% (low carbon steel).
- \_ mild steel has carbon content up to 0.1 %
- IS 800-2007 can be used for structural mild steel or high tension structural steel.

Difference in nomen clature blu Reinforcement de Structural steel:

| Reinforcing bars. |           |           | 1 st    | nictural    | steel.              |
|-------------------|-----------|-----------|---------|-------------|---------------------|
| Fe (250)          | fy. (250) | fu<br>412 | Fe(410) | fy<br>  250 | <u>fu</u><br>(410). |
| Re 415            |           |           |         |             |                     |
| fe 500            |           |           |         |             |                     |

various Grades of Steel (15:800-2007)


| Grade.             | ultimate Tensile<br>stress (fu) (MPa) | (Mila) |
|--------------------|---------------------------------------|--------|
| E 250 (Fe 410) A   |                                       | 250    |
| B<br>C             |                                       |        |
| E300(R440) \$      | 440                                   | 300    |
| E350 (Re 490) &    | 3 490                                 | 350    |
| 15 110 ( 10 CAD) A | 2   840                               | 410.   |

## Note:

- structural steel is specified according to characteristic ultimate tensile stress (i-e fu)
- Characteristic ultimate tensile strength is the stress ultimate stress below which not more than 5% of the materials are expected to fall.

Example: Fe 410 -> fu = 410 MPa.

- Reinforcement bors in RCC are specified on per yield stress.



# stress- strain curve: Strain A -> Proportionality limit B -> Elastic limit c -> Upper yield 'c' -> lower yield -> End of plantic zone/ starting of strain hardenly E -> ultimate point F -> Fracture point. # E250 (Re 410 A) W. Better weld ability. from. K → Grade of steel. characteristic ) characteristic Europiam code. yield strength sted es ultimate grength-95%. probability > "410 mg.

- Thinner section the section, higher is the strength due to higher amount of rolling, cold working, uniform rate of cooling etc.

| for Example: | E 250 (fe 410) |           |           |
|--------------|----------------|-----------|-----------|
| tuckness     | < 20 mm        | 20-40 mm  | >40 mm    |
| strength.    | 250 N/mm2      | 240 N/mm2 | 230 N/mm2 |

- Brittle fracture occurs due to higher tensile stress, lower temperature, thicker material, rapid change of stresses (like in case of fatigue).
- stainless steel is low carbon steel with chromium.

  Generally used for utensils) (chromium > (0.5%) by wt).
- Grade A is med for non-critical application i.e when members are not prone to brittle failure.
- Grade B is used for critical application when temp does not full below 0'c and when parts are prone to brittle footbase fracture or fluctuation of stress as in case of bridges.
- Grade c has a guaranteed low temp (up to -40°c) and impact properties and shall be used when there is a chance of brittle fracture.

Properties of sleel : (valid for all grades).

- 1 Density of steel = 7850 kg/m3
- ① modulus of elasticity,  $E = 2 \times 10^5$  MPa  $= 2 \times 10^5$  N/mm<sup>2</sup>